..

Sabtu, 26 Maret 2011

METABOLISME NITROGEN

1.      Mengapa Nitrogen merupakan zat yang penting bagi tanaman. Jelaskan.
Pentingnya Nitrogen bagi tumbuhan dipertegas dengan kenyataan bahwa dalam tumbuhan hanya karbon, oksigen, dan hidrogenlah yang jumlahnya lebih banyak daripada nitrogen. Nitrogen adalah unsur yang diperlukan untuk membentuk senyawa penting di dalam sel, termasuk protein, DNA dan RNA.  Tanaman harus mengekstraksi kebutuhan nitrogennya dari dalam tanah.  Sumber nitrogen yang terdapat dalam tanah, makin lama makin tidak mencukupi kebutuhan tanaman, sehingga perlu diberikan  pupuk sintetik yang merupakan sumber nitrogen untuk mempertinggi produksi tanaman. Udara yang menyelubungi bumi mengandung gas nitrogen sebanyak 80 %, sebahagian besar dalam bentuk N2 yang tidak dapat dimanfaatkan.  Tanaman dan kebanyakan mikroba tidak mempunyai cara untuk mengikat nitrogen menjadi senyawa dalam selnya.  Tanaman dan mikroba umumnya mendapatkan nitrogen dari senyawa seperti ammonium (NH4+) dan nitrat (NO3-).  Untuk memanfaatkan nitrogen dalam bentuk gas, pakar bioteknologi memusatkan perhatiannya pada hubungan antara tanaman dengan jenis mikroba tertentu yang  dapat menambat nitrogen dari udara dan menyusun atom nitrogen kedalam molekul ammonium, nitrat, atau senyawa lain yang dapat digunakan oleh tumbuhan (Prentis, 1984).
Unsur Nitrogen mempunyai peranan terhadap penyusunan protein, klorofil dan fotosintesa. Jumlah unsur ini harus seimbang di dalam tanaman, kelebihan atau kekurangan unsur ini akan memberi effek negatif terhadap tanaman. Kekurangan unsur Nitrogen pada tanaman akan menyebabkan daun berwarna kuning pucat sehingga akan menghambat pertumbuhan. Kelebihan unsur Nitrogen menyebabkan daun lemah dan rentan terhadap penyakit/hama dan berpengaruh terhadap berkurangnya buah jadi. Defisiensi Nitrogen disebabkan terhambatnya mineralisasi Nitrogen, diantaranya dapat diakibatkan karena aplikasi bahan organik dengan C/N tinggi, aplikasi pemupukan yang tidak efektif dan tidak tepat, akar yang tidak berkembang, dan gulma


2.      Jelaskan peran enzim Nitrat Reduktase, Nitrit Reduktase dan Nitrogenase.
Nitrat Reduktase (NR) merupakan enzim yang mengkatalis nitrat menjadi nitrit dan bersifat inducible karena aktivitasnya dapat ditingkatkan dengan penambahan substrat. Tumbuhan memperoleh nitrogen dengan cara menyerap nitrat atau ion amonia yang ada dalam tanah, penyerapan kedua senyawa ion tersebut digunakan untuk membentuk berbagai senyawa nitrogen misalnya protein. Aktivitas nitrat reduktse dapat ditentukan dengan mengukur absorbansinya yaitu dengan menggunakan spektrofotometri.
Menurut Loveless (1990) aktivitas enzim nitrat reduktase pada daun tanaman dewasa berhubungan dengan hasil tanaman, sehingga tingkat aktivitas enzim nitrat reduktase dapat digunakan sebagai kriteria seleksi untuk memilih genotip dari suatu tanaman yang berdaya hasil tinggi. Enzim nitrat reduktase berguna untuk merubah nitrat menjadi nitrit yang kemudian setelah melalui serangkaian kerja enzim lain nitrit ini akan diubah menjadi asam amino. Alnopri (1995) manambahkan bahwa ANR banyak digunakan sebagai kriteria seleksi tanaman pada program pemuliaan tanaman. Pendekatan berdasarkan ANR sebagai kriteria seleksi dapat dipertimbangkan, karena enzim yang dikendalikan oleh gen yang secara langsung terlibat dalam proses biosintesis protein. NR merupakan enzim pertama yang berperan dalam mereduksi nitrat menjadi amonia.
Reaksi pembentukan NO2- berlangsung dengan pereduksian nitrat menjadi nitrit dikatalis dengan enzim nitrat reduktase (NR). Cara kerja Enzim ini dengan mengikat 2 elektron dari NADH atau NADPH2 menghasilkan nitrit, NAD- dan H2O menurut reaksi :
NO3- + NADH + H + NR NO2- + NAD+ + H2O
Mekanisme kerja NR yaitu Nitrat Reduktase akan mereduksi NO3 - menjadi NO2-, selanjutnya oleh nitrit reduktase akan direduksi menjadi Ammonium (NH4+). Amonia merupakan senyawa nitrogen utama yang dibebaskan dalam pembusukan asam organik. Amonia dalam tanah langsung dioksidasi menjadi nitrat oleh bakteri sehingga ion nitrat biasanya merupakan sumber nitrogen bagi tumbuhan. Ion nitrat setelah diserap harus direduksi. kembali menjadi amonia (Loveless, 1991). Menurut Salisbury and Ross (1995) reaksi nitrat terjadi dalam dua tahap reaksi yang dikatalis oleh enzim yang berlainan. Reaksi pertama dikatalis oleh nitrat reduktase. Enzim NR yang mengangkut dua elektron dan NADPH, pada beberapa spesies dari NADPH, hasilnya berupa nitrit, NAD+ (NADP+) dan H2O. Reaksi kedua yaitu perubahan nitrat menjadi amonia (NH4) yang dikatalis oleh nitrit reduktase (NiR).
Menurut Gardener et.al (1991), aktivitas nitrat reduktase dipengaruhi oleh beberapa faktor diantaranya :
1. Pengaruh pH
Jika suatu enzim menunjukkan kegiatan pada pH tertentu, maka jika pH turun atau naik akan mempengaruhi aktivitas enzim tersebut, oleh karena itu pada pengukuran aktivitas nitrat reduktase digunakan larutan buffer Na-fosfat untuk mengkonstankan atau menyeimbangkan pH nya. Masing-masing enzim juga mempunyai pH optimum yang berbeda-beda.
2. Pengaruh konsentrasi
Konsentrasi berbanding lurus dengan kegiatan enzim, selain itu konsentrasi zat juga berpengaruh pada kerja enzim.
3. Temperatur
Enzim tahan pada temperatur yang rendah 0ºC dan akan mati apabila temperatur diatas 50ºC.
4. Cahaya yang ditangkap oleh daun
Cahaya akan meningkatkan aktivitas nitrat reduktase dan peningkatan lebih nyata laju reduksi nitrat menjadi ammonium (Sallisbury and Ross, 1995).
5. Pengaruh zat penghambat (tannin dan fenol).
6. Umur tanaman

Kesimpulan

1. Ketiga enzim diatas sangat berperan dalam proses atau siklus nitrogen yang sangat diperlukan tanaman. Beberapa fungi mampu menggunakan nitrat sebagai sumber tunggal nitrogennya, yaitu dengan cara mengubahnya menjadi amonium dengan bantuan enzim nitrat reduktase dan nitrit reduktase.
2. Aktivitas nitrat reduktase dipengaruhi oleh beberapa faktor diantaranya pH, Konsentrasi nitrat dan konsentrasi subtrat, temperatur, umur tanaman, Cahaya yang ditangkap dan zat penghambat.
3. Aktivitas Nitrat Reduktase yang diukur pada panjang gelombang 540 nm berturut-turut adalah 0 μ mol NO2/gr/jam, 0,26 μ mol NO2/gr/jam, 0,028 μ mol NO2/gr/jam dengan penambahan NaNO3 sebanyak 0 M; 0,5 M dan 5M.


Nitrogenase : enzim ini akan menambat gas nitrogen di udara dan merubahnya menjadi gas amoniak dan kemudian asetylen menjadi ethylen yang digunakan tanaman untuk dijadikan senyawa dalam selnya.
3.      Bagaimana proses sintesis asam amino melalui proses transaminasi.

4.      Apakah semua asam amino sebagai penyusun protein? Jelaskan.
Protein tersusun dari berbagai asam amino yang masing-masing dihubungkan dengan ikatan peptida. Meskipun demikian, pada awal pembentukannya protein hanya tersusun dari 20 asam amino yang dikenal sebagai asam amino dasar atau asam amino baku atau asam amino penyusun protein (proteinogenik). Asam-asam amino inilah yang disandi oleh DNA/RNA sebagai kode genetik.
Unit dasar penyusun struktur protein adalah asam amino. Dengan kata lain protein tersusun atas asam-asam amino yang saling berikatan.
Struktur Asam Amino
Suatu asam amino-α terdiri atas:
·         Atom C α. Disebut α karena bersebelahan dengan gugus karboksil (asam).
·         Atom H yang terikat pada atom C α.
·         Gugus karboksil yang terikat pada atom C α.
·         Gugus amino yang terikat pada atom C α.
·         Gugus R yang juga terikat pada atom C α.
Macam Asam Amino
Ada 20 macam asam amino, yang masing-masing ditentukan oleh jenis gugus R atau rantai samping dari asam amino. Jika gugus R berbeda maka jenis asam amino berbeda.
Contoh struktur dari beberapa asam amino
Gugus R dari asam amino bervariasi dalam hal ukuran, bentuk, muatan, kapasitas pengikatan hidrogen serta reaktivitas kimia. Keduapuluh macam asam amino ini tidak pernah berubah. Asam amino yang paling sederhana adalah glisin dengan atom H sebagai rantai samping. Berikutnya adalah alanin dengan gugus metil (-CH3) sebagai rantai samping.
TABEL NAMA-NAMA ASAM AMINO
No
Nama
Singkatan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Alanin (alanine)
Arginin (arginine)
Asparagin  (asparagine)
Asam aspartat (aspartic acid)
Sistein (cystine)
Glutamin (Glutamine)
Asam glutamat (glutamic acid)
Glisin (Glycine)
Histidin (histidine)
Isoleusin (isoleucine)
Leusin (leucine)
Lisin (Lysine)
Metionin (methionine)
Fenilalanin (phenilalanine)
Prolin (proline)
Serin (Serine)
Treonin (Threonine)
Triptofan (Tryptophan)
Tirosin (tyrosine)
Valin (valine)
Ala
Arg
Asn
Asp
Cys
Gln
Glu
Gly
His
Ile
Leu
Lys
Met
Phe
Pro
Ser
Thr
Trp
Tyr
Val
1. Alanin (Ala)
Alanin (Ala) atau asam 2-aminopropanoat merupakan salah satu asam amino bukan esensial. Bentuk yang umum di alam adalah L-alanin (S-alanin) meskipun terdapat pula bentuk D-alanin (R-alanin) pada dinding sel bakteri dan sejumlah antibiotika. L-alanin merupakan asam amino proteinogenik yang paling banyak dipakai dalam protein setelah leusin
Gugus metil pada alanina sangat tidak reaktif sehingga jarang terlibat langsung dalam fungsi protein (enzim). Alanina dapat berperan dalam pengenalan substrat atau spesifisitas, khususnya dalam interaksi dengan atom nonreaktif seperti karbon. Dalam proses pembentukan glukosa dari protein, alanina berperan dalam daur alanina.
2. Arginin (Arg)
Asam amino arginin memiliki kecenderungan basa yang cukup tinggi akibat eksesi dua gugus amina pada gugus residunya. Asam amino ini tergolong setengah esensial bagi manusia dan mamalia lainnya, tergantung pada tingkat perkembangan atau kondisi kesehatan.
Bagi anak-anak, asam amino ini esensial. Pangan yang menjadi sumber utama arginin adalah produk-produk peternakan (dairy products) seperti daging, susu (dan olahannya), dan telur. Dari produk tumbuhan dapat disebutkan cokelat dan biji kacang tanah.
3. Asparagin (Asn)
Asparagin adalah analog dari asam aspartat dengan penggantian gugus karboksil oleh gugus karboksamid. Asparagin bersifat netral (tidak bermuatan) dalam pelarut air.
Asparagina merupakan asam amino pertama yang berhasil diisolasi. Namanya diambil karena pertama kali diperoleh dari jus asparagus.
Fungsi biologi: Asparagina diperlukan oleh sistem saraf untuk menjaga kesetimbangan dan dalam transformasi asam amino. Ia berperan pula dalam sintesis amonia.
Sumber: Daging (segala macam sumber), telur, dan susu (serta produk turunannya) kaya akan asparagina
4. Asam aspartat (Asp)
Asam aspartat merupakan satu dari 20 asam amino penyusun protein. Asparagin merupakan asam amino analognya karena terbentuk melalui aminasi aspartat pada satu gugus hidroksilnya.
Asam aspartat bersifat asam, dan dapat digolongkan sebagan asam karboksilat. Bagi mamalia aspartat tidaklah esensial.
Fungsinya diketahui sebagai pembangkit neurotransmisi di otak dan saraf otot. Diduga, aspartat berperan dalam daya tahan terhadap kepenatan. Senyawa ini juga merupakan produk dari daur urea dan terlibat dalam glukoneogenesis.
5. Sistein (Cys)
Sistein merupakan asam amino bukan esensial bagi manusia yang memiliki atom S, bersama-sama dengan metionin. Atom S ini terdapat pada gugus tiol (dikenal juga sebagai sulfhidril atau merkaptan). Karena memiliki atom S, sisteina menjadi sumber utama dalam sintesis senyawa-senyawa biologis lain yang mengandung belerang. Sisteina dan metionin pada protein juga berperan dalam menentukan konformasi protein karena adanya ikatan hidrogen pada gugus tiol.
Sumber utama sisteina pada makanan adalah cabai, bawang putih, bawang bombay, brokoli, haver, dan inti bulir gandum (embrio). L-sistein juga diproduksi secara industri melalui hidrolisis rambut manusia dan babi serta buluunggas.
6. Glutamine (Gln)
Glutamin adalah satu dari 20 asam amino yang memiliki kode pada kode genetik standar. Rantai sampingnya adalah suatu amida. Glutamina dibuat dengan mengganti rantai samping hidroksil asam glutamat dengan gugus fungsional amina.
Glutamina merupakan bagian penting dari asimilasi nitrogen yang berlangsung pada tumbuhan. Amonia yang diserap tumbuhan atau hasil reduksi nitrit diikat oleh asam glutamat menjadi glutamina dengan bantuan enzim glutamin sintetase atau GS.
Glutamina dijadikan suplemen atlet binaraga untuk mengganti kerusakan otot dengan segera akibat latihan beban yang berat.
7. Asam glutamate (Glu)
Asam glutamat termasuk asam amino yang bermuatan (polar) bersama-sama dengan asam aspartat. Ini terlihat dari titik isoelektriknya yang rendah, yang menandakan ia sangat mudah menangkap elektron (bersifat asam menurut Lewis).
Asam glutamat dapat diproduksi sendiri oleh tubuh manusia sehingga tidak tergolong esensial.
Ion glutamat merangsang beberapa tipe saraf yang ada di lidah manusia. Sifat ini dimanfaatkan dalam industri penyedap. Garam turunan dari asam glutamat, yang dikenal sebagai mononatrium glutamat ( dikenal juga sebagai monosodium glutamat, MSG, vetsin atau micin), sangat dikenal dalam dunia boga Indonesia maupun Asia Timur lainnya sebagai penyedap masakan.
8. Glisin (Gly)
Glisina atau asam aminoetanoat adalah asam amino alami paling sederhana. Rumus kimianya C2H5NO2. Asam amino ini bagi manusia bukan merupakan asam amino esensial karena tubuh manusia dapat mencukupi kebutuhannya.
Glisina merupakan asam amino yang mudah menyesuaikan diri dengan berbagai situasi karena strukturnya sederhana. Secara umum protein tidak banyak mengandung glisina. Pengecualiannya ialah pada kolagen yang dua per tiga dari keseluruhan asam aminonya adalah glisina.
Glisina merupakan asam amino nonesensial bagi manusia. Tubuh manusia memproduksi glisina dalam jumlah mencukupi. Glisina berperan dalam sistem saraf sebagai inhibitor neurotransmiter pada sistem saraf pusat (CNS).
9. Histidin (His)
Histidina merupakan satu dari 20 asam amino dasar yang ada dalam protein. Bagi manusia histidina merupakan asam amino yang esensial bagi anak-anak. Fungsi Histidina menjadi prekursor histamin, suatu amina yang berperan dalam sistem saraf, dan karnosin, suatu asam amino.
10. Isoleusin (Ile)
Isoleusina adalah satu dari asam amino penyusun protein yang dikode oleh DNA. Rumus kimianya sama dengan leusinhidrofobik (tidak larut dalam air) dan esensial bagi manusia. tetapi susunan atom-atomnya berbeda. Ini berakibat pada sifat yang berbeda. Isoleusina bersifat
Walaupun berdasarkan strukturnya ada empat kemungkinan stereoisomer seperti treonin, isoleusina alam hanya tersedia dalam satu bentuk saja.
11. Leusin (Leu)
Leusina merupakan asam amino yang paling umum dijumpai pada protein. Ia mutlak diperlukan dalam perkembangan anak-anak dan dalam kesetimbangan nitrogen bagi orang dewasa. Ada dugaan bahwa leusina berperan dalam menjaga perombakan dan pembentukan protein otot. Leusina tergolong asam amino esensial bagi manusia.
12. Lisin (Lys)
Lisina (bahasa Inggris lysine) merupakan asam amino penyusun protein yang dalam pelarut air bersifat basa, seperti juga histidin. Lisina tergolong esensial bagi manusia dan kebutuhan rata-rata per hari adalah 1- 1,5 g. Lisina menjadi kerangka bagi niasin (vitamin B1). Kekurangan vitamin ini dapat menyebabkan pelagra. Lisina juga dilibatkan dalam pengobatan terhadap penyakit herpes.
Biji-bijian serealia terkenal miskin akan lisina. Sebaliknya, biji polong-polongan kaya akan asam amino ini.
13. Metionin (Met)
Metionina, bersama-sama dengan sistein, adalah asam amino yang memiliki atom S. Asam amino ini penting dalam sintesis protein (dalam proses transkripsi, yang menerjemahkan urutan basa nitrogen di DNA untuk membentuk RNA) karena kode untuk metionina sama dengan kode awal (start) untuk suatu rangkaian RNA. Biasanya, metionina awal ini tidak akan terikut dalam protein yang kelak terbentuk karena dibuang dalam proses pascatranskripsi.
Asam amino ini bagi manusia bersifat esensial, sehingga harus dipasok dari bahan pangan. Sumber utama metionina adalah buah-buahan, daging (ayam, sapi, ikan), susu (susu murni, beberapa jenis keju), sayuran (spinach, bayam, bawang putih, jagung), serta kacang-kacangan (kapri, pistacio, kacang mete, kacang merah, tahu, tempe).
14. Fenilalanin (Phe)
Fenilalanina adalah suatu asam amino penting dan banyak terdapat pada makanan, yang bersama-sama dengan asam amino tirosin dan triptofan merupakan kelompok asam amino aromatik yang memiliki cincin benzena.
Fenilalanina bersama-sama dengan taurin dan triptofan merupakan senyawa yang berfungsi sebagai penghantar atau penyampai pesan (neurotransmitter) pada sistem saraf otak.
Dalam keadaan normal, fenilalanina diubah menjadi tirosin dan dibuang dari tubuh. Gangguan dalam proses ini (penyakitnya disebut fenilketonuria atau fenilalaninemia atau fenilpiruvat oligofrenia, disingkat PKU) menyebabkan fenilalanina tertimbun dalam darah dan dapat meracuni otak serta menyebabkan keterbelakangan mental. Penyakit ini diwariskan secara genetik: tubuh tidak mampu menghasilkan enzim pengolah asam amino fenilalanina, sehingga menyebabkan kadar fenilalanina yang tinggi di dalam darah, yang berbahaya bagi tubuh.
15. Prolin (Pro)
Prolina merupakan satu-satunya asam amino dasar yang memiliki dua gugus samping yang terikat satu-sama lain (gugus amino melepaskan satu atom H untuk berikatan dengan gugus sisa). Akibat strukturnya ini, prolina hanya memiliki gugus amina sekunder (-NH-). Beberapa pihak menganggap prolina bukanlah asam amino karena tidak memiliki gugus amina namun imina namun pendapat ini tidak tepat.
Fungsi terpenting prolina tentunya adalah sebagai komponen protein. Sel tumbuh-tumbuhan tertentu yang terpapar kondisi lingkungan yang kurang cocok (misalnya kekeringan) akan menghasilkan prolina untuk menjaga keseimbangan osmotik sel. Prolina dibuat dari asam L-glutamat dengan prekursor suatu asam imino. Prolina bukan merupakan asam amino esensial bagi manusia.
16. Serine (Ser)
Serina merupakan asam amino penyusun protein yang umum ditemukan pada protein hewan. Protein mamalia hanya memiliki L-serin. Serina bukan merupakan asam amino esensial bagi manusia. Namanya diambil dari bahasa Latin, sericum (berarti sutera) karena pertama kali diisolasi dari protein serat sutera pada tahun 1865. Strukturnya diketahui pada tahun 1902.
Fungsi biologi dan kesehatan:
Serina penting bagi metabolisme karena terlibat dalam biosintesis senyawa-senyawa purin dan pirimidin, sistein, triptofan (pada bakteria), dan sejumlah besar metabolit lain.
Sebagai penyusun enzim, serina sering memainkan peran penting dalam fungsi katalisator enzim. Ia diketahui berada pada bagian aktif kimotripsin, tripsin, dan banyak enzim lainnya. Berbagai gas-gas perangsang saraf dan senyawa aktif yang dipakai pada insektisida bekerja melalui residu serina pada enzim asetilkolin esterase, sehingga melumpuhkan enzim itu sepenuhnya. Akibatnya, asetilkolin (suatu neurotransmiter) yang seharusnya segera diuraikan oleh enzim itu segera setelah bekerja malah menumpuk di sel dan mengakibatkan kekejangan dan kematian.
Sebagai penyusun protein non-enzim, rantai sampingnya dapat mengalami glikolisasi yang dapat menjelaskan gangguan akibat diabetes. Serina juga merupakan satu dari tiga asam amino yang biasanya terfosforilasi oleh enzim kinase pada saat transduksi signal pada eukariota
17. Treonin (Thr)
Treonina merupakan salah satu dari 20 asam amino penyusun protein. Bagi manusia, treonina bersifat esensial. Tubuh manusia tidak memiliki enzim pembentuk treonina namun manusia memerlukannya, sehingga treonina esensial (secara gizi) bagi manusia.
Kehadiran enzim treonina-kinase dapat menyebabkan fosforilasi pada treonina, menghasilkan fosfotreonina, senyawa antara penting pada biosintesis metabolit sekunder.
Treonina banyak terkandung pada produk-produk dari susu, daging, ikan, dan biji wijen.
18. Tritofan (Trp)
Triptofan merupakan satu dari 20 asam amino penyusun protein yang bersifat esensial bagi manusia. Bentuk yang umum pada mamalia adalah, seperti asam amino lainnya, L-triptofan. Meskipun demikian D-triptofan ditemukan pula di alam (contohnya adalah pada bisa ular laut kontrifan).
Fungsi biologi dan kesehatan:
Gugus fungsional yang dimiliki triptofan, indol, tidak dimiliki asam-asam amino dasar lainnya. Akibatnya, triptofan menjadi prekursor banyak senyawa biologis penting yang tersusun dalam kerangka indol. Triptofan adalah prekursor melatonin (hormon perangsang tidur), serotonin (suatu transmiter pada sistem saraf) dan niasin (suatu vitamin).
19. Tirosin (Tyr)
Tirosina (dari bahasa Yunani tyros, berarti keju, karena ditemukan pertama kali dari keju) merupakan satu dari 20 asam amino penyusun protein. Ia memiliki satu gugus fenol (fenil dengan satu tambahan gugus hidroksil). Bentuk yang umum adalah L-tirosin (S-tirosin), yang juga ditemukan dalam tiga isomer struktur: para, meta, dan orto.
Pembentukan tirosina menggunakan bahan baku fenilalanin oleh enzim Phe-hidroksilase. Enzim ini hanya membuat para-tirosina. Dua isomer yang lain terbentuk apabila terjadi “serangan” dari radikal bebas pada kondisi oksidatif tinggi (keadaan stress).
Fungsi biologi dan kesehatan:
Dalam transduksi signal, tirosina memiliki peran kunci dalam pengaktifan beberapa enzim tertentu melalui proses fosforilasi (membentuk fosfotirosina). Bagi manusia, tirosina merupakan prekursor hormon tiroksin dan triiodotironin yang dibentuk di kelenjar tiroid, pigmen kulit melanin, dan dopamin, norepinefrin dan epinefrin.
Tirosina tidak bersifat esensial bagi manusia. Oleh enzim tirosina hidroksilase, tirosina diubah menjadi DOPA yang merupakan bagian dari manajemen terhadap penyakit Parkinson.
Tanaman opium (Papaver somniferum) menggunakan tirosina sebagai bahan baku untuk menghasilkan morfin, suatu alkaloid.
20. Valin (Val)
Valina adalah salah satu dari 20 asam amino penyusun protein yang dikode oleh DNA. Dalam ilmu gizi, valina termasuk kelompok asam amino esensial. Namanya berasal dari nama tumbuhan valerian (Valeriana officinalis).
Sifat valina dalam air adalah hidrofobik (‘takut air’) karena ia tidak bermuatan. Pada penyakit anemia “bulan sabit” (sel-sel eritrosit tidak berbentuk seperti pil tetapi seperti bulan sabit, sickle-cell anaemia), valina menggantikan posisi asam glutamat, asam amino lain yang hidrofilik (‘suka air’), pada hemoglobin. Akibatnya bentuk sel berubah dan kehilangan kemampuan mengikat oksigen secara efektif.
Valina diproduksi dengan menggunakan treonin sebagai bahan baku. Sumber pangan yang kaya akan valina mencakup produk-produk peternakan (daging, telur, susu, keju) dan biji-bijian yang mengandung minyak (misalnya kacang tanah, wijen, dan lentil).

5.      Uraikan secara sederhana proses fiksasi N2dari udara oleh bakteri Rhizobium.
Fiksasi Nitrogen oleh Bakteri
Sumber utama nitrogen adalah nitrogen bebas (N2) yang terdapat di atmosfir, yang takarannya mencapai 78 %volume, dan sumber lainnya yang ada di kulit bumi dan perairan. Nitrogen juga terdapat dalam bentuk yang kompleks, tetapi hal ini tidak begitu besar sebab sifatnya yang mudah larut dalam air.
Pada umumnya derivat nitrogen sangat penting bagi kebutuhan dasar nutrisi, tetapi dalam kenyataannya substansi nitrogen adalah hal yang menarik sebagai polutan di lingkungan. Terjadinya perubahan global di lingkungan oleh adanya interaksi antara nitrogen oksida dengan ozon di zona atmosfir. Juga adanya perlakuan pemupukan (fertilization treatment) yang berlebihan dapat mempengaruhi air tanah (soil water), sehingga dapat mempengaruhi kondisi air minum bagi manusia.
Bentuk atau komponen N di atmosfir dapat berbentuk ammonia (NH3), molekul nitrogen (N2), dinitrit oksida (N2O), nitrogen oksida (NO), nitrogen dioksida (NO2), asam nitrit (HNO2), asam nitrat (HNO3), basa amino (R3-N) dan lain-lain dalam bentuk proksisilnitri (Soderlund dan Rosswall, 1980). Dalam telaah kesuburan tanah proses pengubahan nitrogen dapat dilakukan dengan berbagai cara, yaitu mineralisasi senyawa nitrogen komplek, amonifikasi, nitrifikasi, denitrifikasi, dan volatilisasi ammonium (Mas’ud, 1992).
Sejumlah organisme mampu melakukan fiksasi N dan N-bebas akan berasosiasi dengan tumbuhan. Senyawa N-amonium dan N-nitrat yang dimanfaatkan oleh tumbuhan akan diteruskan ke hewan dan manusia dan kembali memasuki sistem lingkungan melalui sisa-sisa jasad renik. Proses fiksasi memerlukan energi yang besar, dan enzim (nitrogenase) bekerja dan didukung oleh oksigen yang cukup. Kedua faktor ini sangat penting dalam memindahkan N-bebas dan sedikit simbiosis oleh organisme (Rompas, 1998).
Nitrogenase mengandung protein besi-belerang dan besi-molibdenum, dan mereduksi nitrogen dengan koordinasi dan transfer elektron dan proton secara kooperatif, dengan menggunakan MgATP sebagai sumber energi. Karena pentingnya reaksi ini, usaha-usaha untuk mengklarifikasi struktur nitrogenase dan mengembangkan katalis artifisial untuk fiksasi nitrogen telah dilakukan secara kontinyu selama beberapa tahun. Baru-baru ini, struktur pusat aktif nitrogenase yang disebut dengan kofaktor besi-molibdenum telah ditentukan dengan analisis kristal tunggal dengan sinar-X.
Nitrogen organic diubah menjadi mineral N-amonium oleh mikroorganisasi dan beberapa hewan yang dapat memproduksi mineral tersebut seperti : protozoa, nematoda, dan cacing tanah. Serangga tanah, cacing tanah, jamur, bakteri dan aktinbimesetes merupakan biang penting tahap pertama penguraian senyawa N-organik dalam bahan organic dan senyawa N-kompleks lainnya (Mas’ud, 1993).
Semua mikroorganisme mampu melakukan fiksasi nitrogen, dan berasosiasi dengan N-bebas yang berasal dari tumbuhan. Nitrogen dari proses fiksasi merupakan sesuatu yang penting dan ekonomis yang dilakukan oleh bakteri genus Rhizobium dengan tumbuhan Leguminosa termasuk Trifollum spp, Gylicene max (soybean), Viciafaba (brand bean), Vigna sinensis (cow-pea), Piscera sativam (chick-pea), dan Medicago sativa (lucerna) (Rompas,1998).
Menurut Maier , dkk (2000) bakteri dalam genus Rhizobium merupakan bakteri gram negatif, berbentuk bulat memanjang, yang secara normal mampu memfiksasi nitrogen dari atmosfer. Umumnya bakteri ini ditemukan pada nodul akar tanaman leguminosae.
Rhizobium berasal dari dua kata yaitu Rhizo yang artinya akar dan bios yang berarti hidup. Rhizobium adalah bakteri yang bersifat aerob, bentuk batang, koloninya berwarna putih berbentuk sirkular, merupakan penambat nitrogen yang hidup di dalam tanah dan berasosiasi simbiotik dengan sel akar legume, bersifat host spesifik satu spesies Rhizobium cenderung membentuk nodul akar pada satu spesies tanaman legume saja. Bakteri Rhizobium adalah organotrof, aerob, tidak berspora, pleomorf, gram negatif dan berbentuk batang. Bakteri rhizobium mudah tumbuh dalam medium pembiakan organik khususnya yang mengandung ragi atau kentang. Pada suhu kamar dan pH 7,0 – 7,2

Morfologi Rhizobium dikenal sebagai bakteroid. Rhizobium menginfeksi akar leguminoceae melalui ujung-ujung bulu akar yang tidak berselulose, karena bakteri Rhizobium tidak dapat menghidrolisis selulose.
Rhizobium yang tumbuh dalam bintil akar leguminoceae mengambil nitrogen langsung dari udara dengan aktifitas bersama sel tanaman dan bakteri, nitrogen itu disusun menjadi senyawaan nitrogen seperti asam-asam amino dan polipeptida yang ditemukan dalam tumbuh-tumbuhan, bakteri dan tanak disekitarnya. Baik bakteri maupun legum tidak dapat menambat nitrogen swcara mandiri, bila Rhizobium tidak ada dan nitrogen tidak terdapat dalam tanah legum tersebut akan mati.
Bakteri Rhizobium hidup dengan menginfeksi akar tanaman legum dan berasosiasi dengan tanaman tersebut, dengan menambat nitrogen. Suatu sistem berdasar pada infeksi spesifik pada jenis inang Legum digunakan untuk menggolongkan Rhizobium secara tepat lebih dari 50 tahun. Kekhususan infeksi mempunyai banyak atraksi praktis yang memperhatikan aplikasi Teknologi Rhizobium, sungguhpun tidak sempurna sebab banyak strains rhizobia bisa menginfeksi ke kelompok spesifik lain dan sebab ada bukti persamaan baru dari taxonomic kimia dan data taxonomic kwantitatip. Tinggal suatu ukuran penting untuk spesiasi genus pada Manual Bergey Systematic Bacteriology, dengan modifikasi bersama data taxonomic baru (Jordan 1984).
Genus Rhizobium sekarang meliputi fast-growing rhizobia yang menghasilkan asam pada ragi mannitol agar (YMA) dan paling sering berasal dari daerah temperate. Ada tiga jenis di dalam Genus ini: R. leguminosarum (biovars viceaea, trifolii dan phaseoliif), R. meliloti, dan R. loti. Ini jenis terakhir termasuk rhizobia yang mampu untuk nodulasi Leucaena dan Mimosa. Genus Bradyrhizobium terdiri dari bakteri slow-growing yang tidak menghasilkan asam pada YMA dan paling umum menginfeksi Legum tropis. Suatu strain Bradyrhizobium juga bertanggung jawab untuk nodulasi non-legume berkayu Paraspnia (Trinick dan Galbraith 1980). Bakteri nodul dalam genus ini adalah kelompok heterogen dalam hubungan taxonomic masih belum dipecahkan. Hanya satu jenis, B. japonicum yang dikenali (Jordan 1984).
Haruslah dicatat bahwa banyak Legum, terutama sekali jenis pohon, mempunyai rute epidermal infeksi dan menembus intercellularly kortex akar. (Sprent dan de Faria 1988).
Tumbuhan yang bersimbiosis dengan Rhizobium banyak digunakan sebagai pupuk hijau seperti Crotalaria, Tephrosia, dan Indigofera. Akar tanaman polong-polongan tersebut menyediakan karbohidrat dan senyawa lain bagi bakteri melalui kemampuannya mengikat nitrogen bagi akar. Jika bakteri dipisahkan dari inangnya (akar), maka tidak dapat mengikat nitrogen sama sekali atau hanya dapat mengikat nitrogen sedikit sekali. Bintil-bintil akar melepaskan senyawa nitrogen organik ke dalam tanah tempat tanaman polong hidup. Dengan demikian terjadi penambahan nitrogen yang dapat menambah kesuburan tanah.
Azotobacter di dalam tanah berperan dalam pengaturan siklus nitrogen, yaitu melakukan fiksasi nitrogen dan mengubahnya menjadi Ammonia (NH3). Dalam sel bakteri ini terdapat sebuah alat yang berperan dalam biokatalis, yaitu enzim nitrogenase. Enzim inilah yang berperan dalam mengubah N2 menjadi NH3.
Bakteri ini memiliki ciri-ciri yang berbeda dengan bakteri lain. Jika kita melihat bentuk koloninya, misalnya; bentuknya bulat, bening, keruh atau opaque, dan putih, permukaannya halus mengkilap, tepi rata,dan berlendir. Lihat gambar di atas tentang koloni Azotobacter .
Bentuk sel Azotobacter bermacam-macam, dari bentuk batang pendek, batang, dan oval serta bentuk yang bermacam-macam, sehingga bakteri ini dikenal sebagai bakteri dengan bentuk sel pleomorfik. Bakteri ini umumnya Gram negative, namun spesies tertentu dari bakteri ini Gram variabel. Artinya, pada saat berumur muda bakteri ini Gram negatif, namun setelah berumur tua akan berubah menjadi Gram positif.
Di samping ini adalah salah satu bentuk sel Azotobacter dan hasil pewarnaan Gram. Gambar tersebut memperlihatkan bahwa bentuk sel Azotobacter batang pendek sedikit oval. Sel ini memiliki banyak flagel yang tersebar diseluruh selongsong selnya, sehingga dinamakan bakteri yang memiliki flagel bertipe peritrik.Pada kondisi yang kurang baik bagi Azotobacter, maka ia akan membentuk kista, bentuk adapatasi pada lingkungan yang kurang menguntungkan.
Akhir-akhir ini ditemukan simbiosis asosiasi antara bakteri Azospirillum lipoferum dan akar tumbuhan termasuk rumput tropikal Digitaria decumbens, juga jenis rumput tropikal Paspalum notatum mampu melakukan fiksasi N bersama-sama bakteri Azotobacter paspalli di dalam akar (Dobereiner, 1978, dalam Rompas, 1998).
Azotobacter sangat sensitif pada alkalinitas, asiditas (Mishustin dan Shilnikova, 1971), dan optimum pada pH 7-8 (Sutedjo et al., 1991). Ion Aluminium bersifat toksik untuk Azotobacter. Hal ini merupakan hambatan utama bagi keberadaan Azotobacter yang berasal dari tanah podsolik (Mishustin dan Shilnikova, 1971).
Fiksasi nitrogen berlangsung dengan bantuan kompleks enzim nitrogenase. Reaksinya sbb:
N2 + 6e – → 2NH3 (DG’0 = +150 kkal/mol = +630 kJ/mol)
Fiksasi N dilakukan oleh beberapa bakteri yang hidup bebas maupun bersimbiosis dengan akar tanaman, misal: Clostridium pasteuranium, Klebisella, Rhodobacter, Rhizobium. Fiksasi N diatur oleh sistem operon gen yang rumit, termasuk gen nif . Fiksasi berlangsung apabila di lingkungan konsentrasi ammonia menurun/rendah.
Pada habitat terrestrial, fiksasi N oleh simbiosis Rhizobium dg tanaman Leguminosae merupakan donor terbesar dari senyawa N. Penelitian tentang fiksasi N telah banyak dilakukan, misal oleh Hardy et al tahun 1968 tentang reduksi asetilen menjadi etilen oleh nitrogenase.
Hasil penelitian tentang fiksasi N ini menunjukkan bahwa ada cukup banyak genera bakteri yang dapat mem-fiksasi N termasuk spesies dari Bacillus, Clostridium, dan Vibrio. Pada habitat perairan, cyanobacteria adalah kelompok utama yang melakukan fiksasi N (Anabaena, Nostoc, Gloeotrichia, Oscillatoria, Lyngbya, dll) Komponen yang berperan dalam fiksasi N di habitat perairan adalah heterocyst, tapi ada cyanobacteria yg tidak memiliki heterocyst yg juga dpt fiksasi N. Fiksasi N memerlukan cukup banyak energi dalam bentuk ATP dan koenzim
6.      Adakah bakteri lain yang mempunyai kemampuan fiksasi N2 dari udara.
·         N2 dapat dimanfaatkan sebagai sumber n oleh tanaman legum (kedelai, buncis, dll) yang bersimbiosis dengan bakteri genus rhizobium
·         N2 difiksasi oleh bakteri dalam nodul akar : N2          NH3 untuk sintesis asam amino, untuk tanaman & bakteri.
·         Tanaman memberi karbohidrat & asam organik bagi bakteri.
·         Reduksi N2          NH3 dibantu nitrogenase
·         Leghaemoglobin dari tanaman  mempertahankan O2 rendah  tidak meracuni bakteri



Tidak ada komentar:

Posting Komentar