..

Senin, 09 April 2012

BIOREMEDIASI

BIOREMEDIASI
(Jurnal)

Pendahuluan
Lintasan biodegradasi berbagai senyawa kimia yang berbahaya dapat dimengerti berdasarkan lintasan mekanisme dari beberapa senyawa kimia alami seperti hidrokarbon, lignin, selulosa, dan hemiselulosa. Sebagian besar dari prosesnya, terutama tahap akhir metabolisme, umumnya berlangsung melalui proses yang sama. Polimer alami yang mendapat perhatian karena sukar terdegradasi di lingkungan adalah lignoselulosa (kayu) terutama bagian ligninnya.
Bioremediasi pada lahan terkontaminasi logam berat didefinisikan sebagai proses membersihkan (clean up) lahan dari bahan-bahan pencemar (pollutant) secara biologi atau dengan menggunakan organisme hidup, baik mikroorganisme (mikrofauna dan mikroflora) maupun makroorganisme (tumbuhan) (Onrizal, 2005).

Jenis-jenis bioremediasi adalah sebagai berikut:
Nutrien dan oksigen, dalam bentuk cair atau gas, ditambahkan ke dalam air atau tanah yang tercemar untuk memperkuat pertumbuhan dan aktivitas bakteri remediasi yang telah ada di dalam air atau tanah tersebut.
Mikroorganisme yang dapat membantu membersihkan kontaminan tertentu ditambahkan ke dalam air atau tanah yang tercemar. Cara ini yang paling sering digunakan dalam menghilangkan kontaminasi di suatu tempat. Namun ada beberapa hambatan yang ditemui ketika cara ini digunakan. Sangat sulit untuk mengontrol kondisi situs yang tercemar agar mikroorganisme dapat berkembang dengan optimal. Para ilmuwan belum sepenuhnya mengerti seluruh mekanisme yang terkait dalam bioremediasi, dan mikroorganisme yang dilepaskan ke lingkungan yang asing kemungkinan sulit untuk beradaptasi.
Bioremediasi Intrinsik
Bioremediasi jenis ini terjadi secara alami di dalam air atau tanah yang tercemar.


Latar belakang
Perkembangan pembangunan di Indonesia khususnya bidang industri, senantiasa meningkatkan kemakmuran dan dapat menambah lapangan pekerjaan bagi masyarakat kita. Namun di lain pihak, perkembangan industri memiliki dampak terhadap meningkatnya kuantitas dan kualitas limbah yang dihasilkan termasuk di dalamnya adalah limbah bahan berbahaya dan beracun (B3). Bila tidak ditangani dengan baik dan benar, limbah B3 akan menimbulkan pencemaran terhadap lingkungan. Pencemaran atau polusi bukan merupakan hal baru, bahkan tidak sedikit dari kita yang sudah memahami pengaruh yang ditimbulkan oleh pencemaran atau polusi lingkungan terhadap kelangsungan dan keseimbangan ekosistem.
Polusi dapat didefinisikan sebagai kontaminasi lingkungan oleh bahan-bahan yang dapat mengganggu kesehatan manusia, kualitas kehidupan, dan juga fungsi alami dari ekosistem. Walaupun pencemaran lingkungan dapat disebabkan oleh proses alami, aktivitas manusia yang notabenenya sebagai pengguna lingkungan adalah sangat dominan sebagai penyebabnya, baik yang dilakukan secara sengaja ataupun tidak.
Berdasarkan kemampuan terdegradasinya di lingkungan, polutan digolongkan atas dua golongan:
1.      Polutan yang mudah terdegradasi (biodegradable pollutant), yaitu bahan seperti sampah yang mudah terdegradasi di lingkungan. Jenis polutan ini akan menimbulkan masalah lingkungan bila kecepatan produksinya lebih cepat dari kecepatan degradasinya.
2.      Polutan yang sukar terdegradasi atau lambat sekali terdegradasi (nondegradable pollutant), dapat menimbulkan masalah lingkungan yang cukup serius.
Bahan polutan yang banyak dibuang ke lingkungan terdiri dari bahan pelarut (kloroform, karbontetraklorida), pestisida (DDT, lindane), herbisida (aroklor, antrazin, 2,4-D), fungisida (pentaklorofenol), insektisida (organofosfat), petrokimia (polycyclic aromatic hydrocarbon [PAH], benzena, toluena, xilena), polychlorinated biphenyls (PCBs), logam berat, bahanbahan radioaktif, dan masih banyak lagi bahan berbahaya yang dibuang ke lingkungan, seperti yang tertera dalam lampiran Peraturan Pemerintah RI Nomor 18 Tahun 1999 tentang Pengelolaan Bahan Berbahaya dan Beracun.

Untuk mengatasi limbah (khususnya limbah B3) dapat digunakan metode biologis sebagai alternatif yang aman, karena polutan yang mudah terdegradasi dapat diuraikan oleh mikroorganisme menjadi bahan yang tidak berbahaya seperti  dan O. Cara biologis atau biodegradasi oleh mikroorganisme, merupakan salah satu cara yang tepat, efektif dan hampir tidak ada pengaruh sampingan pada lingkungan. Hal ini dikarenakan tidak menghasilkan racun ataupun blooming (peledakan jumlah bakteri). Mikroorganisme akan mati seiring dengan habisnya polutan dilokasi kontaminan tersebut.



Tujuan
Tujuan penulisan makalah ini adalah untuk memenuhi tugas mata kuliah bioteknologi Pertanian II , dengan judul Bioremediasi. Selain itu penting bagi kami untuk mempelajari lebih lanjut tentang bioremediasi tanah karena kami bagian dari mahasiswa Fakultas Pertanian yang diharapkan bisa mengaplikasikan keilmuannya dalam menangani pencemaran lingkungan.
Di masa yang akan datang, mikroorganisme rekombinan dapat menyediakan cara yang efektif untuk mengurangi senyawa-senyawa kimiawi yang berbahaya di lingkungan kita. Bagaimanapun, pendekatan itu membutuhkan penelitian yang hati-hati berkaitan dengan mikroorganisme rekombinan tersebut, apakah efektif dalam mengurangi polutan, dan apakah aman saat mikroorganisme itu dilepaskan ke lingkungan. Untuk itulah, mempelajari bioremediasi adalah penting untuk pengembangan penelitian yang dimaksud.


Pencemaran lingkungan tanah belakangan ini mendapat perhatian yang cukup besar, karena globalisasi perdagangan menerapkan peraturan ekolabel yang ketat. Sumber pencemar tanah umumnya adalah logam berat dan senyawa aromatik beracun yang dihasilkan melalui kegiatan pertambangan dan industri. Senyawa-senyawa ini umumnya bersifat mutagenik dan karsinogenik yang sangat berbahaya bagi kesehatan (Joner dan Leyval, 2001 dalam Madjid, 2009).
Cendawan ektomikoriza dapat meningkatkan toleransi tanaman terhadap logam beracun dengan melalui akumulasi logam-logam dalam hifa ekstramatrik dan “extrahyphae slime” (Aggangan et al, 1997 dalam Madjid, 2009). sehingga mengurangi serapannya ke dalam tanaman inang. Namun demikian, tidak semua mikoriza dapat meningkatkan toleransi tanaman inang terhadap logam beracun, karena masing-masing mikoriza memiliki pengaruh yang berbeda. Pemanfaatan cendawan mikoriza dalam bioremidiasi tanah tercemar, disamping dengan akumulasi bahan tersebut dalam hifa, juga dapat melalui mekanisme pengkomplekan logam tersebut oleh sekresi hifa ekternal.
Polusi logam berat pada ekosistem hutan sangat berpengaruh terhadap kesehatan tanaman hutan khususnya perkembangan dan pertumbuhan bibit tanaman hutan (Khan, 1993 dalam Madjid, 2009). Hal semacam ini sangat sering terjadi disekitar areal pertambangan (tailing dan sekitarnya). Kontaminasi tanah dengan logam berat akan meningkatkan kematian bibit dan menggagalkan prgram reboisasi.
Penelitian Aggangan et al (1997) dalam Madjid (2009) pada tegakan Eucalyptus menunjukkan bahwa Ni lebih berbahaya dari Cr. Gejala keracunan Ni tampak pada konsentrasi 80 umol/l pada tanah yang tidak dinokulasi dengan mikoriza sedangkan tanah yang diinokulasi dengan Pisolithus sp., gejala keracunan terjadi pada konsentrasi 160 umol/l. Isolat Pisolithus yang diambil dari residu pertambangan Ni jauh lebih tahan terhadap kadar Ni yang tinggi dibandingkan dengan Pisolithus yang diambil dari tegakan Eucalyptus yang tidak tercemar logam berat.
Upaya bioremediasi lahan basah yang tercemar oleh limbah industri (polutan organik, sedimen pH tinggi atau rendah pada jalur aliran maupun kolam pengendapan) juga dapat dilakukan dengan memanfaatkan tanaman semi akuatik seperti Phragmites australis. Oliveira et al, 2001 dalam Madjid, 2009) menunjukkan bahwa Phragmites australis dapat berasosiasi dengan cendawan mikoriza melalui pengeringan secara gradual dalam jangka waktu yang pendek. Hal ini dapat dijadikan strategi pengelolaan lahan terpolusi (phytostabilisation) dengan meningkatkan laju perkembangan spesies mikotropik. Penelitian Joner dan Leyval (2001) dalam Madjid (2009) menunjukkan bahwa perlakuan mikoriza pada tanah yang tercemar oleh polysiklik aromatic hydrocarbon (PAH) dari limbah industri berpengaruh terhadap pertumbuhan clover, tapi tidak terhadap pertumbuhan reygrass. Dengan mikoriza laju penurunan hasil clover karena PAH dapat ditekan. Tapi bila penambahan mikoriza dibarengi dengan penambahan surfaktan, zat yang melarutkan PAH, maka laju penurunan hasil clover meningkat.
Tanaman yang tumbuh pada limbah pertambangan batubara diteliti Rani et al (1991) dalam Madjid (2009) menunjukkan bahwa dari 18 spesies tanaman setempat yang diteliti, 12 diantaranya bermikoriza. Tanaman yang berkembang dengan baik di lahan limbah batubara tersebut, ditemukan adanya “oil droplets” dalam vesikel akar mikoriza. Hal ini menunjukkan bahwa ada mekanisme filtrasi, sehingga bahan beracun tersebut tidak sampai diserap oleh tanaman.
Mikoriza juga dapat melindungi tanaman dari ekses unsur tertentu yang bersifat racun seperti logam berat (Killham, 1994 dalam Madjid dan Novriani : 2009). Mekanisme perlindungan terhadap logam berat dan unsur beracun yang diberikan mikoriza dapat melalui efek filtrasi, menonaktifkan secara kimiawi atau penimbunan unsur tersebut dalam hifa cendawan. Khan (1993) dalam Madjid dan Novriani (2009) menyatakan bahwa vesikel arbuskular mikoriza (VAM) dapat terjadi secara alami pada tanaman pioner di lahan buangan limbah industri, tailing tambang batubara, atau lahan terpolusi lainnya. Inokulasi dengan inokulan yang cocok dapat mempercepat usaha penghijauan kembali tanah tercemar unsur toksik.
Organofosfat merupakan pestisida yang memiliki toksisitas yang tinggi. Pestisida golongan organofosfat merupakan jenis pestisida yang banyak digunakan di Indonesia, khususnya untuk mengendalikan hama sayuran dan padi. Senyawa aktif pestisida golongan organofosfat seperti metil parathion. Menurut Lakshmirani dan Lalithakumari (1994) dalam Tisnadjaja (2001), Pseudomonas putida mampu untuk menggunakan metil parathion sebagai sumber karbon dan sumber fosfor dalam pertumbuhannya. Pada tahap pertama dari proses degradasi, enzim organofosforus acid anhudrase yang dikeluarkan oleh P. putida menghidrolisis metil parathion menjadi p-nitrophenol. Sementara p-nitrophenol dikonversi lebih lanjut menjadi hydroquinone dan 1,2,4 benzenetriol yang akan dirubah lebih lanjut menjadi maleyl acetate.
Pseudomonas putida mampu tumbuh dalam media sederhana (LB) dengan mengorbankan berbagai macam senyawa organik dan mudah diisolasi dari tanah (batubara, tembakau) dan air tawar. Pertumbuhan optimalnya antara 25-30⁰C. P. putida mampu mendegradasi benzena, toluena, dan Ethylbenzene (Genome, 2011).
Perlu dipahami bahwa tingkat pertumbuhan mikroba yang lebih baik tidak selalu diikuti oleh terjadinya proses degradasi yang tinggi, namun begitu bila pertumbuhan terlalu rendah maka tidak akan terjadi proses biodegradasi yang signifikan. Tingkat ketersediaan glukosa sebagai sumber karbon dalam media menpunyai pengaruh nyata pada tingkat degradasi, hal ini berkaitan dengan tingkat pertumbuhan yang dicapai (Tisnadjaja, 2001).
Selain masalah di atas, enzim-enzim degradatif yang dihasilkan oleh mikroba tidak mampu mengkatalis reaksi degradasi polutan yang tidak alami, kelarutan polutan dalam air sangat rendah, dan polutan terikat kuat dengan partikel-partikel organik atau partikel tanah. Selain itu, pengaruh lingkungan seperti pH, temperatur, dan kelembapan tanah juga sangat berperan dalam menentukan kesuksesan proses bioremediasi (Munir, 2006)


Daftar Pustaka
Seregeg, I.G. 1998. Efektivitas Saringan Bioremediasi Tnaman Mendong (Scirpus littoralis Schard), Kangkung (Ipomea acuatica Forsk) dan Tales-Talesan (Typhonium Miq) melalui Uji Coba Lapang Skala Kecil dan Simulasi di Laboratorium [ Disertasi ], Bogor, Institut Pertanian Bogor, Program Pascasarjana.
Haryoto, K. 1999. Kebijakan dan Strategi Pengolahan Limbah dalam Menghadapi Tantangan Global. Di dalam : Teknologi Pengolahan Limbah dan Pemulihan Kerusakan Lingkungan. Prosiding Seminar Nasional, Jakarta 13 Juli 1999, BPPT, Jakarta.
Sudarmaji, J.Mukono, Corie I.P. 2006. Toksikologi Logam Berat B3 dan Dampaknya terhadap Kesehatan. Jurnal Kesehatan Lingkungan, Vol 2 Nomor 2, Januari 2006, Halaman 129 – 142.

Watanabe, Kazuya. 2001. Microorganisms relevant to bioremediation. Journal environmental biotechnology vol 12 halaman 237 – 241.


Walter, M. V. 1997. Bioaugmentation. Ch. 82 in Manual of Environmental Microbiology. Christon J. Hurst (Ed). ASM Press. Washington DC.


kamriantiramli. 2011. Pembahasan - Bioremediasihttp://kamriantiramli.wordpress.com/2011/06/15/pembahasan-bioremediasi/. Diakses pada 20 maret 2012


1 komentar: